public class DoubleFFT_3D extends Object
Constructor and Description |
---|
DoubleFFT_3D(long slices,
long rows,
long columns)
Creates new instance of DoubleFFT_3D.
|
Modifier and Type | Method and Description |
---|---|
void |
complexForward(double[] a)
Computes 3D forward DFT of complex data leaving the result in
a . |
void |
complexForward(double[][][] a)
Computes 3D forward DFT of complex data leaving the result in
a . |
void |
complexForward(pl.edu.icm.jlargearrays.DoubleLargeArray a)
Computes 3D forward DFT of complex data leaving the result in
a . |
void |
complexInverse(double[][][] a,
boolean scale)
Computes 3D inverse DFT of complex data leaving the result in
a . |
void |
complexInverse(double[] a,
boolean scale)
Computes 3D inverse DFT of complex data leaving the result in
a . |
void |
complexInverse(pl.edu.icm.jlargearrays.DoubleLargeArray a,
boolean scale)
Computes 3D inverse DFT of complex data leaving the result in
a . |
void |
realForward(double[] a)
Computes 3D forward DFT of real data leaving the result in
a
. |
void |
realForward(double[][][] a)
Computes 3D forward DFT of real data leaving the result in
a
. |
void |
realForward(pl.edu.icm.jlargearrays.DoubleLargeArray a)
Computes 3D forward DFT of real data leaving the result in
a
. |
void |
realForwardFull(double[] a)
Computes 3D forward DFT of real data leaving the result in
a
. |
void |
realForwardFull(double[][][] a)
Computes 3D forward DFT of real data leaving the result in
a
. |
void |
realForwardFull(pl.edu.icm.jlargearrays.DoubleLargeArray a)
Computes 3D forward DFT of real data leaving the result in
a
. |
void |
realInverse(double[][][] a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in
a
. |
void |
realInverse(double[] a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in
a
. |
void |
realInverse(pl.edu.icm.jlargearrays.DoubleLargeArray a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in
a
. |
void |
realInverseFull(double[][][] a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in
a
. |
void |
realInverseFull(double[] a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in
a
. |
void |
realInverseFull(pl.edu.icm.jlargearrays.DoubleLargeArray a,
boolean scale)
Computes 3D inverse DFT of real data leaving the result in
a
. |
public DoubleFFT_3D(long slices, long rows, long columns)
slices
- number of slicesrows
- number of rowscolumns
- number of columnspublic void complexForward(double[] a)
a
. The data is stored in 1D array addressed in slice-major,
then row-major, then column-major, in order of significance, i.e. element
(i,j,k) of 3D array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 *
columns and rowStride = 2 * columns. Complex number is stored as two
double values in sequence: the real and imaginary part, i.e. the input
array must be of size slices*rows*2*columns. The physical layout of the
input data is as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a
- data to transformpublic void complexForward(pl.edu.icm.jlargearrays.DoubleLargeArray a)
a
. The data is stored in 1D array addressed in slice-major,
then row-major, then column-major, in order of significance, i.e. element
(i,j,k) of 3D array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 *
columns and rowStride = 2 * columns. Complex number is stored as two
double values in sequence: the real and imaginary part, i.e. the input
array must be of size slices*rows*2*columns. The physical layout of the
input data is as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a
- data to transformpublic void complexForward(double[][][] a)
a
. The data is stored in 3D array. Complex data is
represented by 2 double values in sequence: the real and imaginary part,
i.e. the input array must be of size slices by rows by 2*columns. The
physical layout of the input data is as follows:
a[k1][k2][2*k3] = Re[k1][k2][k3], a[k1][k2][2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a
- data to transformpublic void complexInverse(double[] a, boolean scale)
a
. The data is stored in a 1D array addressed in
slice-major, then row-major, then column-major, in order of significance,
i.e. element (i,j,k) of 3-d array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 *
columns and rowStride = 2 * columns. Complex number is stored as two
double values in sequence: the real and imaginary part, i.e. the input
array must be of size slices*rows*2*columns. The physical layout of the
input data is as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a
- data to transformscale
- if true then scaling is performedpublic void complexInverse(pl.edu.icm.jlargearrays.DoubleLargeArray a, boolean scale)
a
. The data is stored in a 1D array addressed in
slice-major, then row-major, then column-major, in order of significance,
i.e. element (i,j,k) of 3-d array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 *
columns and rowStride = 2 * columns. Complex number is stored as two
double values in sequence: the real and imaginary part, i.e. the input
array must be of size slices*rows*2*columns. The physical layout of the
input data is as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a
- data to transformscale
- if true then scaling is performedpublic void complexInverse(double[][][] a, boolean scale)
a
. The data is stored in a 3D array. Complex data is
represented by 2 double values in sequence: the real and imaginary part,
i.e. the input array must be of size slices by rows by 2*columns. The
physical layout of the input data is as follows:
a[k1][k2][2*k3] = Re[k1][k2][k3], a[k1][k2][2*k3+1] = Im[k1][k2][k3], 0<=k1<slices, 0<=k2<rows, 0<=k3<columns,
a
- data to transformscale
- if true then scaling is performedpublic void realForward(double[] a)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 1D array addressed in
slice-major, then row-major, then column-major, in order of significance,
i.e. element (i,j,k) of 3-d array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 *
columns and rowStride = 2 * columns. The physical layout of the output
data is as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3] = Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3] = -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3], 0<=k1<slices, 0<=k2<rows, 0<k3<columns/2, a[k1*sliceStride + k2*rowStride] = Re[k1][k2][0] = Re[(slices-k1)%slices][rows-k2][0], a[k1*sliceStride + k2*rowStride + 1] = Im[k1][k2][0] = -Im[(slices-k1)%slices][rows-k2][0], a[k1*sliceStride + (rows-k2)*rowStride + 1] = Re[(slices-k1)%slices][k2][columns/2] = Re[k1][rows-k2][columns/2], a[k1*sliceStride + (rows-k2)*rowStride] = -Im[(slices-k1)%slices][k2][columns/2] = Im[k1][rows-k2][columns/2], 0<=k1<slices, 0<k2<rows/2, a[k1*sliceStride] = Re[k1][0][0] = Re[slices-k1][0][0], a[k1*sliceStride + 1] = Im[k1][0][0] = -Im[slices-k1][0][0], a[k1*sliceStride + (rows/2)*rowStride] = Re[k1][rows/2][0] = Re[slices-k1][rows/2][0], a[k1*sliceStride + (rows/2)*rowStride + 1] = Im[k1][rows/2][0] = -Im[slices-k1][rows/2][0], a[(slices-k1)*sliceStride + 1] = Re[k1][0][columns/2] = Re[slices-k1][0][columns/2], a[(slices-k1)*sliceStride] = -Im[k1][0][columns/2] = Im[slices-k1][0][columns/2], a[(slices-k1)*sliceStride + (rows/2)*rowStride + 1] = Re[k1][rows/2][columns/2] = Re[slices-k1][rows/2][columns/2], a[(slices-k1)*sliceStride + (rows/2) * rowStride] = -Im[k1][rows/2][columns/2] = Im[slices-k1][rows/2][columns/2], 0<k1<slices/2, a[0] = Re[0][0][0], a[1] = Re[0][0][columns/2], a[(rows/2)*rowStride] = Re[0][rows/2][0], a[(rows/2)*rowStride + 1] = Re[0][rows/2][columns/2], a[(slices/2)*sliceStride] = Re[slices/2][0][0], a[(slices/2)*sliceStride + 1] = Re[slices/2][0][columns/2], a[(slices/2)*sliceStride + (rows/2)*rowStride] = Re[slices/2][rows/2][0], a[(slices/2)*sliceStride + (rows/2)*rowStride + 1] = Re[slices/2][rows/2][columns/2]This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real forward transform, use
realForwardFull
. To get back the
original data, use realInverse
on the output of this method.a
- data to transformpublic void realForward(pl.edu.icm.jlargearrays.DoubleLargeArray a)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 1D array addressed in
slice-major, then row-major, then column-major, in order of significance,
i.e. element (i,j,k) of 3-d array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 *
columns and rowStride = 2 * columns. The physical layout of the output
data is as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3] = Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3] = -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3], 0<=k1<slices, 0<=k2<rows, 0<k3<columns/2, a[k1*sliceStride + k2*rowStride] = Re[k1][k2][0] = Re[(slices-k1)%slices][rows-k2][0], a[k1*sliceStride + k2*rowStride + 1] = Im[k1][k2][0] = -Im[(slices-k1)%slices][rows-k2][0], a[k1*sliceStride + (rows-k2)*rowStride + 1] = Re[(slices-k1)%slices][k2][columns/2] = Re[k1][rows-k2][columns/2], a[k1*sliceStride + (rows-k2)*rowStride] = -Im[(slices-k1)%slices][k2][columns/2] = Im[k1][rows-k2][columns/2], 0<=k1<slices, 0<k2<rows/2, a[k1*sliceStride] = Re[k1][0][0] = Re[slices-k1][0][0], a[k1*sliceStride + 1] = Im[k1][0][0] = -Im[slices-k1][0][0], a[k1*sliceStride + (rows/2)*rowStride] = Re[k1][rows/2][0] = Re[slices-k1][rows/2][0], a[k1*sliceStride + (rows/2)*rowStride + 1] = Im[k1][rows/2][0] = -Im[slices-k1][rows/2][0], a[(slices-k1)*sliceStride + 1] = Re[k1][0][columns/2] = Re[slices-k1][0][columns/2], a[(slices-k1)*sliceStride] = -Im[k1][0][columns/2] = Im[slices-k1][0][columns/2], a[(slices-k1)*sliceStride + (rows/2)*rowStride + 1] = Re[k1][rows/2][columns/2] = Re[slices-k1][rows/2][columns/2], a[(slices-k1)*sliceStride + (rows/2) * rowStride] = -Im[k1][rows/2][columns/2] = Im[slices-k1][rows/2][columns/2], 0<k1<slices/2, a[0] = Re[0][0][0], a[1] = Re[0][0][columns/2], a[(rows/2)*rowStride] = Re[0][rows/2][0], a[(rows/2)*rowStride + 1] = Re[0][rows/2][columns/2], a[(slices/2)*sliceStride] = Re[slices/2][0][0], a[(slices/2)*sliceStride + 1] = Re[slices/2][0][columns/2], a[(slices/2)*sliceStride + (rows/2)*rowStride] = Re[slices/2][rows/2][0], a[(slices/2)*sliceStride + (rows/2)*rowStride + 1] = Re[slices/2][rows/2][columns/2]This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real forward transform, use
realForwardFull
. To get back the
original data, use realInverse
on the output of this method.a
- data to transformpublic void realForward(double[][][] a)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 3D array. The physical
layout of the output data is as follows:
a[k1][k2][2*k3] = Re[k1][k2][k3] = Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3], a[k1][k2][2*k3+1] = Im[k1][k2][k3] = -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3], 0<=k1<slices, 0<=k2<rows, 0<k3<columns/2, a[k1][k2][0] = Re[k1][k2][0] = Re[(slices-k1)%slices][rows-k2][0], a[k1][k2][1] = Im[k1][k2][0] = -Im[(slices-k1)%slices][rows-k2][0], a[k1][rows-k2][1] = Re[(slices-k1)%slices][k2][columns/2] = Re[k1][rows-k2][columns/2], a[k1][rows-k2][0] = -Im[(slices-k1)%slices][k2][columns/2] = Im[k1][rows-k2][columns/2], 0<=k1<slices, 0<k2<rows/2, a[k1][0][0] = Re[k1][0][0] = Re[slices-k1][0][0], a[k1][0][1] = Im[k1][0][0] = -Im[slices-k1][0][0], a[k1][rows/2][0] = Re[k1][rows/2][0] = Re[slices-k1][rows/2][0], a[k1][rows/2][1] = Im[k1][rows/2][0] = -Im[slices-k1][rows/2][0], a[slices-k1][0][1] = Re[k1][0][columns/2] = Re[slices-k1][0][columns/2], a[slices-k1][0][0] = -Im[k1][0][columns/2] = Im[slices-k1][0][columns/2], a[slices-k1][rows/2][1] = Re[k1][rows/2][columns/2] = Re[slices-k1][rows/2][columns/2], a[slices-k1][rows/2][0] = -Im[k1][rows/2][columns/2] = Im[slices-k1][rows/2][columns/2], 0<k1<slices/2, a[0][0][0] = Re[0][0][0], a[0][0][1] = Re[0][0][columns/2], a[0][rows/2][0] = Re[0][rows/2][0], a[0][rows/2][1] = Re[0][rows/2][columns/2], a[slices/2][0][0] = Re[slices/2][0][0], a[slices/2][0][1] = Re[slices/2][0][columns/2], a[slices/2][rows/2][0] = Re[slices/2][rows/2][0], a[slices/2][rows/2][1] = Re[slices/2][rows/2][columns/2]This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real forward transform, use
realForwardFull
. To get back the
original data, use realInverse
on the output of this method.a
- data to transformpublic void realForwardFull(double[] a)
a
. This method computes full real forward transform, i.e. you will get the
same result as from complexForward
called with all imaginary
part equal 0. Because the result is stored in a
, the input
array must be of size slices*rows*2*columns, with only the first
slices*rows*columns elements filled with real data. To get back the
original data, use complexInverse
on the output of this
method.a
- data to transformpublic void realForwardFull(pl.edu.icm.jlargearrays.DoubleLargeArray a)
a
. This method computes full real forward transform, i.e. you will get the
same result as from complexForward
called with all imaginary
part equal 0. Because the result is stored in a
, the input
array must be of size slices*rows*2*columns, with only the first
slices*rows*columns elements filled with real data. To get back the
original data, use complexInverse
on the output of this
method.a
- data to transformpublic void realForwardFull(double[][][] a)
a
. This method computes full real forward transform, i.e. you will get the
same result as from complexForward
called with all imaginary
part equal 0. Because the result is stored in a
, the input
array must be of size slices by rows by 2*columns, with only the first
slices by rows by columns elements filled with real data. To get back the
original data, use complexInverse
on the output of this
method.a
- data to transformpublic void realInverse(double[] a, boolean scale)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 1D array addressed in
slice-major, then row-major, then column-major, in order of significance,
i.e. element (i,j,k) of 3-d array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 *
columns and rowStride = 2 * columns. The physical layout of the input
data has to be as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3] = Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3] = -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3], 0<=k1<slices, 0<=k2<rows, 0<k3<columns/2, a[k1*sliceStride + k2*rowStride] = Re[k1][k2][0] = Re[(slices-k1)%slices][rows-k2][0], a[k1*sliceStride + k2*rowStride + 1] = Im[k1][k2][0] = -Im[(slices-k1)%slices][rows-k2][0], a[k1*sliceStride + (rows-k2)*rowStride + 1] = Re[(slices-k1)%slices][k2][columns/2] = Re[k1][rows-k2][columns/2], a[k1*sliceStride + (rows-k2)*rowStride] = -Im[(slices-k1)%slices][k2][columns/2] = Im[k1][rows-k2][columns/2], 0<=k1<slices, 0<k2<rows/2, a[k1*sliceStride] = Re[k1][0][0] = Re[slices-k1][0][0], a[k1*sliceStride + 1] = Im[k1][0][0] = -Im[slices-k1][0][0], a[k1*sliceStride + (rows/2)*rowStride] = Re[k1][rows/2][0] = Re[slices-k1][rows/2][0], a[k1*sliceStride + (rows/2)*rowStride + 1] = Im[k1][rows/2][0] = -Im[slices-k1][rows/2][0], a[(slices-k1)*sliceStride + 1] = Re[k1][0][columns/2] = Re[slices-k1][0][columns/2], a[(slices-k1)*sliceStride] = -Im[k1][0][columns/2] = Im[slices-k1][0][columns/2], a[(slices-k1)*sliceStride + (rows/2)*rowStride + 1] = Re[k1][rows/2][columns/2] = Re[slices-k1][rows/2][columns/2], a[(slices-k1)*sliceStride + (rows/2) * rowStride] = -Im[k1][rows/2][columns/2] = Im[slices-k1][rows/2][columns/2], 0<k1<slices/2, a[0] = Re[0][0][0], a[1] = Re[0][0][columns/2], a[(rows/2)*rowStride] = Re[0][rows/2][0], a[(rows/2)*rowStride + 1] = Re[0][rows/2][columns/2], a[(slices/2)*sliceStride] = Re[slices/2][0][0], a[(slices/2)*sliceStride + 1] = Re[slices/2][0][columns/2], a[(slices/2)*sliceStride + (rows/2)*rowStride] = Re[slices/2][rows/2][0], a[(slices/2)*sliceStride + (rows/2)*rowStride + 1] = Re[slices/2][rows/2][columns/2]This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real inverse transform, use
realInverseFull
.a
- data to transformscale
- if true then scaling is performedpublic void realInverse(pl.edu.icm.jlargearrays.DoubleLargeArray a, boolean scale)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 1D array addressed in
slice-major, then row-major, then column-major, in order of significance,
i.e. element (i,j,k) of 3-d array x[slices][rows][2*columns] is stored in
a[i*sliceStride + j*rowStride + k], where sliceStride = rows * 2 *
columns and rowStride = 2 * columns. The physical layout of the input
data has to be as follows:
a[k1*sliceStride + k2*rowStride + 2*k3] = Re[k1][k2][k3] = Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3], a[k1*sliceStride + k2*rowStride + 2*k3+1] = Im[k1][k2][k3] = -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3], 0<=k1<slices, 0<=k2<rows, 0<k3<columns/2, a[k1*sliceStride + k2*rowStride] = Re[k1][k2][0] = Re[(slices-k1)%slices][rows-k2][0], a[k1*sliceStride + k2*rowStride + 1] = Im[k1][k2][0] = -Im[(slices-k1)%slices][rows-k2][0], a[k1*sliceStride + (rows-k2)*rowStride + 1] = Re[(slices-k1)%slices][k2][columns/2] = Re[k1][rows-k2][columns/2], a[k1*sliceStride + (rows-k2)*rowStride] = -Im[(slices-k1)%slices][k2][columns/2] = Im[k1][rows-k2][columns/2], 0<=k1<slices, 0<k2<rows/2, a[k1*sliceStride] = Re[k1][0][0] = Re[slices-k1][0][0], a[k1*sliceStride + 1] = Im[k1][0][0] = -Im[slices-k1][0][0], a[k1*sliceStride + (rows/2)*rowStride] = Re[k1][rows/2][0] = Re[slices-k1][rows/2][0], a[k1*sliceStride + (rows/2)*rowStride + 1] = Im[k1][rows/2][0] = -Im[slices-k1][rows/2][0], a[(slices-k1)*sliceStride + 1] = Re[k1][0][columns/2] = Re[slices-k1][0][columns/2], a[(slices-k1)*sliceStride] = -Im[k1][0][columns/2] = Im[slices-k1][0][columns/2], a[(slices-k1)*sliceStride + (rows/2)*rowStride + 1] = Re[k1][rows/2][columns/2] = Re[slices-k1][rows/2][columns/2], a[(slices-k1)*sliceStride + (rows/2) * rowStride] = -Im[k1][rows/2][columns/2] = Im[slices-k1][rows/2][columns/2], 0<k1<slices/2, a[0] = Re[0][0][0], a[1] = Re[0][0][columns/2], a[(rows/2)*rowStride] = Re[0][rows/2][0], a[(rows/2)*rowStride + 1] = Re[0][rows/2][columns/2], a[(slices/2)*sliceStride] = Re[slices/2][0][0], a[(slices/2)*sliceStride + 1] = Re[slices/2][0][columns/2], a[(slices/2)*sliceStride + (rows/2)*rowStride] = Re[slices/2][rows/2][0], a[(slices/2)*sliceStride + (rows/2)*rowStride + 1] = Re[slices/2][rows/2][columns/2]This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real inverse transform, use
realInverseFull
.a
- data to transformscale
- if true then scaling is performedpublic void realInverse(double[][][] a, boolean scale)
a
. This method only works when the sizes of all three dimensions are
power-of-two numbers. The data is stored in a 3D array. The physical
layout of the input data has to be as follows:
a[k1][k2][2*k3] = Re[k1][k2][k3] = Re[(slices-k1)%slices][(rows-k2)%rows][columns-k3], a[k1][k2][2*k3+1] = Im[k1][k2][k3] = -Im[(slices-k1)%slices][(rows-k2)%rows][columns-k3], 0<=k1<slices, 0<=k2<rows, 0<k3<columns/2, a[k1][k2][0] = Re[k1][k2][0] = Re[(slices-k1)%slices][rows-k2][0], a[k1][k2][1] = Im[k1][k2][0] = -Im[(slices-k1)%slices][rows-k2][0], a[k1][rows-k2][1] = Re[(slices-k1)%slices][k2][columns/2] = Re[k1][rows-k2][columns/2], a[k1][rows-k2][0] = -Im[(slices-k1)%slices][k2][columns/2] = Im[k1][rows-k2][columns/2], 0<=k1<slices, 0<k2<rows/2, a[k1][0][0] = Re[k1][0][0] = Re[slices-k1][0][0], a[k1][0][1] = Im[k1][0][0] = -Im[slices-k1][0][0], a[k1][rows/2][0] = Re[k1][rows/2][0] = Re[slices-k1][rows/2][0], a[k1][rows/2][1] = Im[k1][rows/2][0] = -Im[slices-k1][rows/2][0], a[slices-k1][0][1] = Re[k1][0][columns/2] = Re[slices-k1][0][columns/2], a[slices-k1][0][0] = -Im[k1][0][columns/2] = Im[slices-k1][0][columns/2], a[slices-k1][rows/2][1] = Re[k1][rows/2][columns/2] = Re[slices-k1][rows/2][columns/2], a[slices-k1][rows/2][0] = -Im[k1][rows/2][columns/2] = Im[slices-k1][rows/2][columns/2], 0<k1<slices/2, a[0][0][0] = Re[0][0][0], a[0][0][1] = Re[0][0][columns/2], a[0][rows/2][0] = Re[0][rows/2][0], a[0][rows/2][1] = Re[0][rows/2][columns/2], a[slices/2][0][0] = Re[slices/2][0][0], a[slices/2][0][1] = Re[slices/2][0][columns/2], a[slices/2][rows/2][0] = Re[slices/2][rows/2][0], a[slices/2][rows/2][1] = Re[slices/2][rows/2][columns/2]This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real inverse transform, use
realInverseFull
.a
- data to transformscale
- if true then scaling is performedpublic void realInverseFull(double[] a, boolean scale)
a
. This method computes full real inverse transform, i.e. you will get the
same result as from complexInverse
called with all imaginary
part equal 0. Because the result is stored in a
, the input
array must be of size slices*rows*2*columns, with only the first
slices*rows*columns elements filled with real data.a
- data to transformscale
- if true then scaling is performedpublic void realInverseFull(pl.edu.icm.jlargearrays.DoubleLargeArray a, boolean scale)
a
. This method computes full real inverse transform, i.e. you will get the
same result as from complexInverse
called with all imaginary
part equal 0. Because the result is stored in a
, the input
array must be of size slices*rows*2*columns, with only the first
slices*rows*columns elements filled with real data.a
- data to transformscale
- if true then scaling is performedpublic void realInverseFull(double[][][] a, boolean scale)
a
. This method computes full real inverse transform, i.e. you will get the
same result as from complexInverse
called with all imaginary
part equal 0. Because the result is stored in a
, the input
array must be of size slices by rows by 2*columns, with only the first
slices by rows by columns elements filled with real data.a
- data to transformscale
- if true then scaling is performedCopyright © 2015. All rights reserved.